Board Meeting
July 7, 2020

Zoom
1:00 - 4:00 pm
STEM Action Center Board

Dr. Dave Hill / Chair
State Board of Education Member

Dee Mooney / Vice Chair
Executive Director, Micron Foundation

Jake Reynolds
Business Development & Operations Administrator, Idaho Department of Commerce

Jeff Rosser
Director of Continuous Improvement, Hecla Mining

Jennifer Jackson
Public Affairs and Strategic Initiatives, Idaho National Laboratory

Paul Casey
Director Research and Development, Chobani

Tim McMurtrey
Deputy Superintendent of Operations, State Department of Education

Wendi Secrist
Director, Idaho Department of Labor
Welcome Our New Board Member!

Jad Mahnken
St. Alphonsus
Recruiter

Saint Alphonsus
Approval of November Minutes

Request for Motion to Approve Minutes from April
Welcome Our Presenters from OSBE and IDOL

Education and Workforce Trends for Young Adults
with time for Question & Answer

Cathleen McHugh, OSBE, Chief Research Officer
& Craig Shaul, Research Analyst, Supervisor
Idaho STEM AC Statutes

- Idaho Code 67-823: Established the Idaho STEM Action Center
- Idaho Code 33-1633: Computer Science Initiative
- Idaho Code 67-824: Established the STEM Education Fund
- Idaho Code 33-4701: STEM School Designation
- Idaho Code 33-1634: Computer Science for All
- Idaho Code 33-523: Established a STEM Diploma
- Idaho Code 63-3029A: Established STEM AC as an Idaho Education Tax Credit
Required Documents STEM AC

FY20 Performance Report and Strategic Plan

Due: August 28, 2020
Mission and Vision

- **MISSION**: Engineering innovative opportunities for educators, students, communities, and industry to build a competitive Idaho workforce and economy through STEM and computer science education

- **VISION**: A diverse, equitable, thriving ecosystem for a prosperous, STEM-literate Idaho
Goals

• **GOAL 1**: Advance equitable access to high-quality STEM+CS opportunities for educators, students, and communities

• **GOAL 2**: Align STEM education with workforce needs throughout Idaho

• **GOAL 3**: Increase awareness of the importance of STEM throughout Idaho
Impacts of COVID

- Postponed Professional Developments
- Cancelled Events
- Donations and Funding Considerations
- Future Planning for PD and events
- STEM AC Team launched three COVID Initiatives

![COVID-19 Safety](image)
~$38k in materials/shipping grants awarded
• 130 facilities, organizations, & individuals requesting fabric masks, face shields and mask extenders!
• 75 registered makers and sewists

11,700 Fabric Masks
5,035 Mask Extenders
4,300 Face Shields
3,200 3D Printed Masks
STEM@Home

At home, hands-on STEM activities and resources

https://resources.stem.idaho.gov/
Idaho Codes

• Industry Partners: Micron Foundation, ICCU, St. Luke’s, Acahand Foundation, Ken Garff Automotive Group, Idaho Technology Council

• Idaho Codes is an online, self-paced computer science program that teaches 7-12th grade students the foundational skills of building websites and developing apps with HTML, CSS, and JavaScript.

• https://stem.idaho.gov/apply/idahocodes/
GOAL 1: Advance equitable access to high-quality STEM+CS opportunities for educators, students, and communities

- i-STEM with SDE, H&W + industry sponsors:
 -36 strands at 6 sites with 400 educators (postponed to 2021)
- VR4Ed PD
- Educurious Educator PD
- Computational Thinking Imbedded Core Curricular Lessons with IDLA

- Designer Drone PD
- Competitions
 - Junior Botball Challenge
 - Botball
 - eCYBERMISSION Program
 - MakerMinded
 - ISEF – changed funding amounts significantly
 - Competition sponsorships
GOAL 2: Align STEM education and workforce

Externship Update

• 10/1-2/7: Application Open for Businesses
• 1/6-2/7: Application Open for Externs
• 2/8-2/14:
 o Apps reviewed by STEM AC/WDC
 o Potential candidates sent to businesses
• 2/15-3/30: Candidates Interview with Businesses
• By 4/1: Candidates Offered Externships
• 5/30: Externships begin
GOAL 2: Align STEM education and workforce

STEM School Designation (Ideal) Timeline

• Idaho Code: 33-4701
• Schools can apply anytime, but onsite reviews typically occur in the fall; leads to STEM Certification
• November – School Visits and Certification
• January – Approval by STEM AC Board
• February – Approval by OSBE Board leads to STEM Designation
• Recognition of STEM Designation during legislative session
• Recognition Events at Schools in the Spring and financial support (10K will be reduced to 5K in FY21)
STEM Designated Schools (§33-4701)

- **Barbara Morgan STEM Academy**, K-5, West Ada
- **Bingham Academy**, 9-12, Blackfoot
- **Galileo STEM Academy**, K-8, West Ada
- **Temple View Elementary**, PK-6, Idaho Falls
- **North Idaho STEM Academy**, K-12, Rathdrum
- **Southside Elementary**, K-6, Lake Pend Oreille, Cocolalla
Updated STEM Designation Framework from Cognia

- Previous: 11 Standards across 3 Domains
- New: 16 Standards across 4 Domains

STEM students (5 Indicators)
Focused on the skills, knowledge, and thinking strategies that prepare them to be innovative, creative, and systematic problem-solvers in STEM fields of study and work.

Educators (4 Indicators)
Focused on real-world application, content integration, professional collaboration and improvement in instructional practices for STEM-specific disciplines

Experiences (2 Indicators)
Focused on partner engagement, authentic connections and extended-day opportunities
STEM LEARNERS

ST1.1 The STEM school/program supports non-traditional student participation through outreach to groups often underrepresented in STEM program areas.

ST1.2 Students work independently and collaboratively in an inquiry-based learning environment that encourages finding creative solutions to authentic and complex problems.

ST1.3 Students are empowered to personalize and self-direct their STEM learning experiences supported by STEM educators who facilitate their learning.

ST1.4 Students use technology resources to conduct research, demonstrate creative and critical thinking, and communicate and work collaboratively.

ST1.5 Students demonstrate their learning through performance-based assessments and express their conclusions through elaborated explanations of their thinking.
STEM EDUCATORS

ST1.6 The interdisciplinary problem-based curriculum includes a focus on real world applications.

ST1.7 STEM educators collaborate as an interdisciplinary team to plan, implement, and improve integrated STEM learning experiences.

ST1.8 STEM learning outcomes demonstrate students’ STEM literacy necessary for the next level of STEM learning and for post-secondary and workforce readiness.

ST1.9 STEM teachers and leaders participate in a continuous program of STEM-specific professional learning.

STEM EXPERIENCES

ST1.10 Community, post-secondary, business/industry partners and/or families actively support and are engaged with teachers and students in the STEM program.

ST1.11 Students are supported in their STEM learning through adult-world connections and extended day opportunities.
STEM School Certification Update for 2020
16 standards across 4 domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Themes</th>
</tr>
</thead>
</table>
| STEM Community | -Inclusion & Equity
 | -Community Engagement
 | -Leadership
 | -STEM Educator Collaboration |
| STEM Learning Culture | -Communication
 | -Professional Learning
 | -Project-Based and Inquiry Learning
 | -Self-Directed Learning |
| STEM Experiences | -STEM Discipline Integration
 | -STEM Extensions
 | -Performance Assessment
 | -STEM Curriculum Organization |
| STEM Outcomes | -STEM Content Knowledge
 | -STEM Skills and Competencies
 | -Strategic Management
<pre><code> | -Program Evaluation |
</code></pre>
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standard Themes</th>
<th>Standard Statements</th>
<th>Standard Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM Community</td>
<td>Standard 1 - Inclusion/Equity</td>
<td>Standard 1 - School/program provides equitable opportunities for students to engage in high quality STEM learning</td>
<td>Standard 1 - Concept 1 - School/program has adopted an inclusive model of STEM education that is representative of community served by the institution</td>
</tr>
<tr>
<td></td>
<td>Standard 2 - STEM Educator Collaboration</td>
<td>Standard 2 - STEM educators collaborate to develop, implement, and improve high quality STEM learning activities</td>
<td>Standard 2 - Concept 1 - STEM educators and leaders have formal, protected time scheduled on a regular and frequent basis to plan, revise, and improve STEM learning experiences and pedagogical best practices</td>
</tr>
<tr>
<td></td>
<td>Standard 3 - STEM Community Engagement</td>
<td>Standard 3 - School/program engages diverse STEM community in order to support and sustain STEM programs and initiatives</td>
<td>Standard 3 - Concept 1 - School/program establishes and maintains sustainable partnerships with a variety of community organizations, including local businesses, STEM practitioners, institutions of higher education, and individuals/families</td>
</tr>
<tr>
<td></td>
<td>Standard 4 - Leadership</td>
<td>Standard 4 - School/program has established a shared vision for STEM and has leadership structures to support effective implementation</td>
<td>Standard 4 - Concept 1 - School/program has developed a model of shared leadership whereby structures exist both internally (i.e. STEM Leadership Team, STEM Coordinator) and externally (i.e. STEM Advisory Board, STEM Stakeholder Committee) to support and sustain STEM initiatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard 4 - Concept 2 - STEM leadership has effectively communicated a shared vision and mission for the STEM culture, with goals and intended outcomes for STEM initiatives</td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td>Standard Themes</td>
<td>Standard Statements</td>
<td>Standard Concepts</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>STEM Learning Culture</td>
<td>Standard 5 - Communication</td>
<td>Standard 5 - Leaders ensure that all stakeholders have ongoing opportunities to access information and learn about STEM implementation</td>
<td>Standard 5 - Concept 1 - School/program utilizes a variety of strategies and platforms to share and communicate STEM vision, mission, goals, outcomes, responsibilities, roles, events, and activities to internal and external stakeholders</td>
</tr>
<tr>
<td></td>
<td>Standard 6 - Professional Development</td>
<td>Standard 6 - Educators and leaders participate in an ongoing system of STEM-specific professional learning</td>
<td>Standard 6 - Concept 1 - School/program facilitates professional learning opportunities for educators and leaders that lead to improved efficacy in specific areas of responsibility (such as STEM disciplinary content knowledge or instructional coaching)</td>
</tr>
<tr>
<td></td>
<td>Standard 7 - Project-Based and Inquiry Learning</td>
<td>Standard 7 - Students engage collaboratively in authentic inquiry during ongoing units of study</td>
<td>Standard 7 - Concept 1 - Students are provided opportunities to work collaboratively during project and inquiry-based units of study</td>
</tr>
<tr>
<td></td>
<td>Standard 8 - Self-Directed Learning</td>
<td>Standard 8 - Students engage in self-directed STEM learning guided by educators who are effective facilitators of learning</td>
<td>Standard 8 - Concept 1 - Students are encouraged to be critical and creative thinkers as owners and managers of their own STEM learning experiences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard 8 - STEM educators serve as facilitators who provide guidance and support for students as self-directed learners</td>
<td>Standard 8 - Concept 2 - STEM educators serve as facilitators who provide guidance and support for students as self-directed learners</td>
</tr>
<tr>
<td>Domain</td>
<td>Standard Themes</td>
<td>Standard Statements</td>
<td>Standard Concepts</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| STEM Experiences | Standard 9 - STEM Extensions | Standard 9 - School/program provides within-school and extra-curricular opportunities for students to extend STEM learning | Standard 9 - Concept 1 - School/program provides a variety of STEM-specific extracurricular and extended day opportunities for all learners (clubs, competitions, summer camps)

Standard 9 - Concept 2 - Students have multiple formal, age-appropriate opportunities to engage with STEM practitioners, community experts, and/or other STEM partners |
| Standard 10 - Performance Assessment | Standard 10 - Students demonstrate their learning through performance-based assessments and have opportunities to develop self-assessment and self-monitoring skills | Standard 10 - Concept 1 - Students engage in STEM-specific performance assessments that provide opportunities for public demonstrations of learning | Standard 10 - Concept 2 - Students engage in goal-setting, formative self-assessment, and reflections on learning |
| Standard 11 - STEM Discipline Integration | Standard 11 - STEM learning experiences integrate all STEM disciplines with an emphasis on processes and practices associated with STEM | Standard 11 - Concept 1 - The curriculum and associated learning activities integrate learning across all STEM disciplines (and additional content disciplines in schools that have adopted other inclusive models of integrated learning, such as The Arts for STEAM schools)

Standard 11 - Concept 2 - The curriculum engages students in STEM processes and practices (such as the Engineering Design Process) |
<p>| Standard 12 - STEM Curriculum Organization | Standard 12 - School/program provides high quality STEM courses and curriculum aligned to recognized standards and organized into interdisciplinary frameworks | Standard 12 - Concept 1 - The STEM curriculum is mapped and aligned to formally adopted and recognized sets of standards and/or benchmarks | Standard 12 - Concept 2 - The STEM curriculum is organized around multiple real world, interdisciplinary problem- and/or project-based units of study |</p>
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standard Themes</th>
<th>Standard Statements</th>
<th>Standard Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM Outcomes</td>
<td>Standard 13 - STEM Content Knowledge</td>
<td>Standard 13 - Students demonstrate STEM content knowledge representative of STEM literacy outcomes that prepare them for the next level of learning and work</td>
<td>Standard 13 - Concept 1 - School/program has identified learning standards and aligned sources of student performance data for each of the STEM disciplines, as well as content areas included in the institution's integrated model (i.e. STEAM, STREAM, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard 13 - Concept 2 - Trend data indicate student growth and mastery of learning standards and expectations associated with frameworks adopted by the school/program for all STEM disciplines, as well as content areas included in the institution's integrated model (i.e. STEAM, STREAM)</td>
<td></td>
</tr>
<tr>
<td>Standard 14 - STEM Skills and Competencies</td>
<td>Standard 14 - Students develop STEM skills and cross-cutting competencies that support workforce readiness</td>
<td>Standard 14 - Concept 1 - School/program has identified discipline-specific skills and cross-cutting competencies (i.e. 21st Century Skills, soft skills) and aligned sources of student performance data for each of these areas</td>
<td>Standard 14 - Concept 2 - STEM events, curriculum, and learning activities provide opportunities for career exploration and workplace experiences</td>
</tr>
<tr>
<td>Standard 15 - Strategic Management</td>
<td>Standard 15 - School/program engages in a continuous improvement process for STEM</td>
<td>Standard 15 - Concept 1 - School/program engages in a research-based process for continuous improvement that involves establishing strategic vision and STEM goals, as well as planning for, implementing, monitoring and adjusting STEM initiatives.</td>
<td>Standard 15 - Concept 2 - School/program engages in a process for strategic resource management to ensure that there are adequate resources and supports for the full implementation of the STEM program</td>
</tr>
<tr>
<td>Standard 16 - Program Evaluation</td>
<td>Standard 16 - School/program conducts evaluative activities to ensure the effectiveness of STEM implementation</td>
<td>Standard 16 - Concept 1 - School/program engages in a formal process to evaluate the effectiveness of its STEM initiatives and activities in terms of impact on student learning and development</td>
<td>Standard 16 - Concept 2 - School/program engages in a formal process to evaluate the effectiveness of its STEM initiatives and activities in terms of improvement of professional and teaching practices</td>
</tr>
</tbody>
</table>
Cross Walk Document, attached and alignment to Idaho Code 33-4701
Evaluation - Using the i3 Rubric
<table>
<thead>
<tr>
<th>Initiate</th>
<th>Implementation</th>
<th>Results</th>
<th>Sustainability</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement</td>
<td>The level of involvement and frequency stakeholders are engaged in the desired practices, processes, or programs.</td>
<td>The desired practices, processes, or programs are monitored and adjusted for quality and fidelity of implementation.</td>
<td>The collection, analysis, and use of data and evidence to demonstrate attaining the desired result(s).</td>
<td>Results achieved consistently demonstrate growth and improvement over time (minimum of three years).</td>
</tr>
<tr>
<td>Few stakeholders are involved in support of the desired practice or program.</td>
<td>The desired practice or program is minimally implemented.</td>
<td>There is little or no data and evidence of attaining the desired result(s).</td>
<td>The institution has little or no data and evidence to indicate growth and improvement over time.</td>
<td>The desired practice or program is not ingrained in the institution.</td>
</tr>
<tr>
<td>Some stakeholders are frequently involved in support of the desired practice or program.</td>
<td>The desired practice or program is being monitored for implementation.</td>
<td>The institution collects and analyzes data and evidence to demonstrate the progress toward attaining the desired result(s).</td>
<td>The institution has some data and evidence to indicate growth and improvement over time.</td>
<td>The desired practice or program is ingrained in parts of the institution.</td>
</tr>
<tr>
<td>Many stakeholders are frequently involved in support of the desired practice or program.</td>
<td>The desired practice or program is being monitored and adjusted for quality and fidelity of implementation.</td>
<td>The institution collects, analyzes, and uses multiple sources of data and evidence to demonstrate progress toward attaining the desired result(s).</td>
<td>The institution has consistently documented data and evidence to indicate growth and improvement over time.</td>
<td>The desired practice or program is ingrained in the culture of the day-to-day work of the institution.</td>
</tr>
<tr>
<td>Most stakeholders are frequently involved in support of the desired practice or program.</td>
<td>Formal processes are used to demonstrate that the desired practice or program is implemented and monitored with quality and fidelity.</td>
<td>Formal processes are implemented to collect, analyze, and use multiple forms of data and evidence to demonstrate progress toward attaining the desired result(s).</td>
<td>The institution has consistently documented data and evidence to indicate sustained growth and improvement over time.</td>
<td>The desired practice or program is deeply ingrained and protected throughout the culture and the operations of the institution.</td>
</tr>
<tr>
<td>Initiative</td>
<td>Improve</td>
<td>Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engagement</td>
<td>Implementation</td>
<td>Results</td>
<td>Sustainability</td>
<td>Embeddedness</td>
</tr>
<tr>
<td>The level of involvement and frequency stakeholders are engaged in the desired practices, processes, or programs.</td>
<td>The desired practices, processes, or programs are monitored and adjusted for quality and fidelity of implementation.</td>
<td>The collection, analysis, and use of data and evidence to demonstrate attaining the desired result(s).</td>
<td>Results achieved consistently demonstrate growth and improvement over time (minimum of three years).</td>
<td>The desired practices, processes, or programs are deeply ingrained in the culture and operation of the institution.</td>
</tr>
</tbody>
</table>

Engagement: Do we currently have data and documentation relative to the level of involvement of our partners for this improvement initiative?

Implementation: Do we currently have data and documentation to demonstrate that initiative is monitored and adjusted for quality and fidelity of implementation?

Results: Do we currently have evidence that we collect, analyze, and use data to attain the desired results for this initiative?

Sustainability: Do we have data to demonstrate growth and improvement for this initiative over time?

Embeddedness: Can we demonstrate that this practice is deeply ingrained in the culture and practice of our institution?
GOAL 2: Align STEM education & workforce needs throughout Idaho

MOTION Requested

To send the updated STEM School Designation standards to the Idaho State Board of Education for approval per Idaho code 33-4701.
GOAL 2: Align STEM education & workforce needs throughout Idaho

STEM Diploma Discussion (Code 33-523) and Data Request from OSBE

Course List, attached
GOAL 2: Align STEM education with workforce needs throughout Idaho: GRANTS

- National Science Foundation for EcosySTEM - $99,499
- Army Education Outreach Program (AEOP) Grant for eCYBERMISSION program - $50,000
- FIRST Equity Community Innovation Grant - $50,000
- Idaho Space Grant Consortium for ISEF - $25,000
- STEMx for EcosySTEM - $12,320
- Best Buy for Botball - $10,000
- US Bank for Computer Science devices - $2,500
- Rocky Mountain Power Foundation for $3,000 for i-STEM
- Multiple other grants submitted and/or in progress: Laura Moore Cunningham, NSF-CSforAll, Idaho Community Foundation-Future Fund, Office of Naval Research, Murdock Foundation, Agmen Foundation
STEM Ecosystem Strategic Planning Meetings and Partners

https://stem.idaho.gov/idaho-stem-ecosystem/
GOAL 2: Align STEM education and workforce needs throughout Idaho

STEM AC Foundation Update

- $824,002 raised in FY20
- First Annual Meeting Held May 19, 2020
- Seeking Northern Idaho BOD Member(s)
- Special Partnership - Idaho Codes Impact
- Amazon Smiles, Fred Meyer Community Rewards
FY20 Support Growth

Through P3, New Program Sponsors, Stronger Partners

<table>
<thead>
<tr>
<th>FY2019 Funds Raised</th>
<th>FY2020 Funds Raised</th>
</tr>
</thead>
<tbody>
<tr>
<td>$504,188</td>
<td>$824,002</td>
</tr>
</tbody>
</table>

- Idaho National Laboratory – $319,000
- Micron Technology Foundation – $146,000
- Laura Moore Cunningham Foundation – $50,000
- J.R. Simplot Company Foundation – $50,000
- Acahand Foundation – $50,000
- Power Foundation – $29,000
- Idaho Community Foundation – $25,000
- J.A. & Kathryn Albertson Foundation – $25,000
- Individual donors – $14,000
GOAL 2: Align STEM education and workforce needs throughout Idaho

Donor Totals for FY20 = ~$1,746,000

- Idaho National Laboratory $319,000
- Micron Technology Foundation $268,000
- Battelle $75,000
- Acahand Foundation $50,000
- JR Simplot Company Foundation $50,000
- Laura Moore Cunningham Foundation $50,000
- Power Foundation $50,000
- Ken Garff Automotive Foundation $40,000
- Individuals $40,000
GOAL 2: Align STEM education and workforce needs throughout Idaho

Top Donor Programs in FY20

- Public-Private Partnerships $1,226,000
- Educator PD $156,000
 - i-STEM $93,000
 - INDEEDS Award $31,000
- Competitions $145,000
Total In-Kind Donations

$4,884,000 in FY20

Includes judges, mentors, industry partnerships, and earned media coverage
GOAL 3: Increase awareness of the importance of STEM throughout Idaho

Upcoming Awareness Events: Idaho Association of School Administrators Conference, ION Power Up STEM Expo (virtual), and Idaho School Boards Association Conference

Extensive Media Coverage:
COVID-19 initiatives: STEM@Home, #IdahoMakersUnite, and Idaho Codes, and EcosySTEM NSF Grant, ISEF, and eCYBERMISSION
BUDGET DISCUSSION

Past (FY20), Present (FY21), and Future (FY22)
FY21 Appropriation: $5,997,300

DEDICATED FUNDS
$3,102,600 Spending Authority (without cash)

GENERAL FUND
$2,894,700 Cash

INDUSTRY
$1 million Raised

GRANTS

~$1.94M Ongoing OE
$513,500 Ongoing PC

$405,600 Ongoing Cash
Analysis by Project – FY20 and FY21

<table>
<thead>
<tr>
<th>BY GOAL</th>
<th>FY20 – Proposed (Aug 2019)</th>
<th>FY20 – Actual (June 2020)</th>
<th>FY21 – Proposed (July 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOAL 1: Grants</td>
<td>7%</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>GOAL 1: PD</td>
<td>27%</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>GOAL 2: Sponsorships (Competitions + student travel, Events, P3 and Sponsorships, Mentorship, workforce programs, externships, STEM schools, ecosystems support, pilot projects)</td>
<td>45%</td>
<td>40%</td>
<td>41%</td>
</tr>
<tr>
<td>GOAL 3: Outreach/Awareness Activities</td>
<td>11%</td>
<td>13%</td>
<td>14%</td>
</tr>
<tr>
<td>Operating Expenses (office + software, contractors, travel, memberships, infrastructure)</td>
<td>9%</td>
<td>11%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Programs Cut Due to $1M Reduction in FY20 Appropriation for CS Initiative

*Attached: Budget Reduction Proposal

*Elimination: PK12 Grant, STEM Leadership Training, Learning Blade Online Career Exploration

*Reduction: ISEF Classroom Funding, STEM School Designation Support, Competition Travel, Sponsorships, VR4Ed, Drones, Junior Botball and Botball, Camp Grants and Family STEM and Career Awareness
GOAL 3: Increase awareness of STEM throughout Idaho

Updating our Data Collection Methods and Outcome Metrics

Data Map Link

<table>
<thead>
<tr>
<th></th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20 (estimates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Engagements</td>
<td>10,428</td>
<td>204,000</td>
<td>406,239</td>
<td>442,318</td>
<td>164,687</td>
</tr>
<tr>
<td>Educators Interactions</td>
<td>1,200</td>
<td>4,800</td>
<td>12,633</td>
<td>35,768</td>
<td>22,369</td>
</tr>
<tr>
<td>Community STEM Events</td>
<td>45</td>
<td>140</td>
<td>143</td>
<td>288</td>
<td>250</td>
</tr>
<tr>
<td>Cash</td>
<td>$72,000</td>
<td>$205,000</td>
<td>$750,500</td>
<td>$1,346,800</td>
<td>$1.746M</td>
</tr>
<tr>
<td>In-Kind (and cash equivalent)</td>
<td>Did not track</td>
<td>$662,000</td>
<td>$1,787,400</td>
<td>$4,446,500</td>
<td>$4,884,000</td>
</tr>
</tbody>
</table>
FY22 Budget Request
Due August 28, 2020

• Base budget/spending freeze: FY22 request cannot exceed $3,044,400 for General Fund

• One line item for FY22: Move 1 FTE from STEM Education Fund to General Fund to ensure ongoing cash to fund the position
Legislation for 2021 Session

• Currently NO proposed legislation
• Ideas/Needs from the Board?
STEM AC Legislation (67-823) and Bylaws call for annual selection of Chair and Vice Chair

MOTION Requested

Chair Nominee: Dee Mooney

Vice Chair Nominee: Jeff Rosser
Public Comment
Support Needed To Cultivate Additional Public-Private Partnerships

• Please continue to introduce us to individuals, businesses or companies that have a common mission/vision for STEM education

• Public-Private Partnership Application is opening mid-July
Areas You Can Support

Messaging
 - Introductions to STEM Supporters
 - Volunteer Recruitment via STEM AC Webpage
 - Follow us on Social Media (or share)
Other Upcoming Events

Idaho EcosySTEM
Strategic Planning Meeting
Sept. 17 – 18

Next Board Meeting:
October 19 at the Capitol

January 14, 2021
STEM Matters at the Capitol