Title	Description	Grade Levels	Subjects	Instructor(s)
Coding for	This strand is an introduction for those who work with Kindergarten	K-2	Science, Technology	Lisa Dreadfulwater and
Primary	through 2nd grade students to explore the value of teaching coding as			Lynn Wessels
Educators	well as how to teach students to code. Participants will work with a			
	variety of "gadgets" that inspire students to learn to code. Time to			
	practice with age appropriate online resources to develop coding			
	experience for students will be provided as well as offline or unplugged			
	activities. This session is intended for individuals who are just learning			
	about code and want to teach novices about coding. *This strand is			
	appropriate for informal educators.			
Lego STEM	We will be using Lego kits to create stations that you can use in your	К-3	Science,	Melissa Stroupe and
Stations in	classroom, in many different ways. We will be looking at how we can use		Technology,	Sheila Frei
Primary	these stations to promote STEM, and creating new ideas. There will also		Engineering, Math	
Classrooms	be a field trip to see a variety of jobs in STEM careers, and gain practical			

Junior Botball	Come have fun learning about robotics and how to integrate robotics	3-7	Science,	Christina Hopper and
Robotics	into the classroom or for after school groups. You will build your robot		Technology,	Penni Aufderheide
	with the help of instructions and use C++ programming to conquer a		Engineering, Math,	
	variety of programming challenges. You will be amazed at what you will		Computer Science	
	be able to do programming your Junior Botball robot. In addition, we will			
	share about our after school Junior Botball program, grant writing, and			
	how to integrate robotics and problem-based learning. We recommend			
	taking the strand with a colleague so you can share robots after taking			
	the workshop. The robots come with a complete curriculum for easy			
	implementation into the classroom or outside of school. The strand is			
	prepared for elementary level students but can easily be adapted for			
	middle and high school students. Come have a ball with Junior Botball!			
	*This strand is appropriate for informal educators.			

Given enough thrust almost anything will fly through the air. If you	4-12	Science,	Karen Laitinen
design an object to take advantage of lift and thrust you can design a		Technology,	
truly remarkable flying object that will fly with attitude and altitude.		Engineering, Math	
Come join us in the adventure of flight and release the inner pilot or			
engineer in yourself and your students. Participants will participate in			
classroom ready STEM activities for force, thrust, lift, drag and Newton's			
three laws of motion. All using objects that fly. This Aviation STEM strand	l		
is designed to integrate Science, Technology, Engineering and Math in			
the science classroom. Science concepts are introduced and reviewed in			
briefings and debriefing labs. The lab activities are designed to engage			
students with technology and engineering design. The students learn the			
math principles needed to analyze data collected and use it in a redesign			
process.			

UFOs

Materials	Science excites students' interest because the student has everyday,	4-12	Science,	Sherri Rukes and Patti
Matter: How to	hands-on experience with materials. Thus, materials topics are great		Engineering, Math	Conn
Excite Students	motivators in any engineering, technology or science course. Materials			
with	are also a very important and an integral part of the manufacturing			
ScienceMateria	process. During the workshop, teacher participants will learn the basics			
ls	of Materials Science. They will work hands-on with metals by actually			
	being able to pour molten metal and see properties of heat treatments			
	can do on metals, look at creating water soluble glass beads and other			
	properties of ceramics, explore the many properties of polymers and			
	create and study composites. These activities will develop a greater			
	appreciation for the importance of these materials to modern life. You			
	will see how many project-based activities can excite students to learn			
	science concepts as they complete projects of personal worth to them.			
	Materials can be used as to infuse concepts into an existing science			
	course to increase relevance. A variety of activities and topics will be			
	discussed. Whether you have taken a Mat Sci course before or never			
	been exposed to it, this workshop will provide you opportunities to try			
	hands on activities, labs, and engineering design contests to expose			
	students to the world of materials. Many connections and practical			
	applications will be discussed and many of the supplies of inexpensive to			
	demonstrate the concepts. *This strand is appropriate for informal			
	educators.			